A lazy approach to on-line bipartite matching
نویسندگان
چکیده
We present a new approach, called a lazy matching, to the problem of on-line matching on bipartite graphs. Originally, each arriving element is irrevocably matched with some already existing one. In this paper we allow matching a new element to a group of elements (possibly decreasing other groups) with additional restrictions that every two groups have to be disjoint and decreasing a group is allowed as long as it stays not empty. We present a deterministic optimal algorithm and prove that its competitive ratio equals 1 − π/ cosh(√ 3 2 π) ≈ 0.588. The lazy approach allows to break the barrier of 1/2, which is the best competitive ratio that can be guaranteed by any deterministic algorithm in the classical on-line matching.
منابع مشابه
Lectures 4 and 5 – Matchings
A matching in a graph is a set of edges, no two of which share an endpoint. We describe Edmond’s algorithm for finding matchings of maximum cardinality in a graph. For bipartite graphs with edge weights, we also show how to find matchings of maximum weight. It is recommended that the reader draws pictures of the various constructs that we use (such as alternating trees). I was too lazy to incor...
متن کاملOn the inverse maximum perfect matching problem under the bottleneck-type Hamming distance
Given an undirected network G(V,A,c) and a perfect matching M of G, the inverse maximum perfect matching problem consists of modifying minimally the elements of c so that M becomes a maximum perfect matching with respect to the modified vector. In this article, we consider the inverse problem when the modifications are measured by the weighted bottleneck-type Hamming distance. We propose an alg...
متن کاملInduced matchings in asteroidal triple-free graphs
An induced matching M of a graph G is a set of pairwise nonadjacent edges such that no two edges of M are joined by an edge in G. The problem of /nding a maximum induced matching is known to be NP-hard even for bipartite graphs of maximum degree four. In this paper, we study the maximum induced matching problem on classes of graphs related to AT-free graphs. We /rst de/ne a wider class of graph...
متن کاملBounding cochordal cover number of graphs via vertex stretching
It is shown that when a special vertex stretching is applied to a graph, the cochordal cover number of the graph increases exactly by one, as it happens to its induced matching number and (Castelnuovo-Mumford) regularity. As a consequence, it is shown that the induced matching number and cochordal cover number of a special vertex stretching of a graph G are equal provided G is well-covered bipa...
متن کاملZarankiewicz Numbers and Bipartite Ramsey Numbers
The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1410.3764 شماره
صفحات -
تاریخ انتشار 2014